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NATURAL THERMAL-CONCENTRATION CONVECTION 

Yu. A. Buevich and V. N. Mankevich UDC 536.25:5,~io135 

Combined thermal and concentration convection is studied for the example of the 
problem of flow and transport near the surface of a horizontal disk. 

Natural convection processes in the field of gravity are determined by the dependence 
of the density of the fluid on the temperature or the concentration of the impurity diffus- 
ing in it and the nonuniformity of the fields of these quantities in the presence of heat 
and mass transfer from surfaces immersed in the fluid. There are a very large number of 
studies of free-convection stimulated by only one of the indicated factors and of the corre- 
sponding convective transport processes (see the review in [I, 2]). A significant number of 
numerical studies of situations in which both factors are important at the same time have 
also been performed. Free convective flow at a horizontal surface is, however, an exception 
in this respect; to analyze this flow it is necessary to study not only the horizontal but 
also the vertical component of the vector equation of conservation of momentum. This makes 
the calculations significantly more complicated, which apparently explains the fact that 
there are only a few isolated papers on the study of such flow. 

Numerical solutions, however, in spite of their importance in obtaining reliable quan- 
titative results, are very cumbersome and, most importantly, they are not very useful for 
constructing a complete physical picture of the process and formulating comparatively simple 
relations describing the process in a wide range of values of the parameters. Attempts, of 
which we are aware, to describe analytically the combined thermal concentration convection 
(made, in particular, in the analysis of the macrokinetics of heterogeneous reactions) are, 
as a rule, based on the use of asymptotic boundary layer methods combined with the prin.ziple 
of superposition, which cannot, in principle, be correct when it is applied to strong con- 
vective heat conduction and diffusion processes [3]. Inaccuracies of a fundamental cha~rac- 
ter, concerning the determination of the effective thicknesses of the hydrodynamic and 
thermal or diffusion layers (see below), which must be corrected, are also encountered in 
the use of a thin boundary layer. Finally, there are experimental indications [4] of the 
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Fig. i. Schematic diagram of two types 
of convective flow at the bottom sur- 
face of a disk (a, b) and at a vertical 
plate (c, d); the dashed lines show 
provisionally the boundary of the hy- 
drodynamic boundary layer. 

possibility of a change in the regime of thermal-concentration convection (change in the 
direction of flow), which still has not been given a theoretical-physical explanation. 

Natural convection processes, in which both mechanisms of the change in density operate, 
are very common in cases when evaporation, condensation, or dissolution occurs on a surface 
or some heterogeneous reaction with a significant heat effect occurs. The latter situation 
is especially important in application to organization of diverse electrochemical processes, 
when the thermal factors can affect the magnitude of the flows of reagents (and therefore 
also the macrokinetics of the process) and change the direction of the convective motion 
itself. This situation unfortunately is usually ignored not only in chemical or electro- 
chemical technology but also in the formulation and interpretation of experiments, and this 
leads to incorrect conclusions (see, for example, [4]). 

In what follows the problem of combined thermal-concentration convection is studied for 
the example of flow at a horizontal disk, participating simultaneously in both heat and mass 
exchange with the surrounding liquid. For the case when the bottom surface of the disk is 
active the types of flows shown schematically in Fig. 1 are possible; if the top surface is 
active, the flow patterns are completely analogous. Systems of this type were employed in 
[5-10] for studying purely thermal free convection. The visualization of the flow, made in 
a number of works (see, for example, [8]), confirms the schemes presented and indicates that 
a thin thermal boundary layer forms on the surface of the disk. This serves as an adequate 
experimental foundation for applying the existing methods of the boundary-layer approxima- 
tion, in particular, in this work also. 

We shall first examine the situation when as a result of the combined effect of thermal 
and concentration factors the density of the fluid is lower than far away from the disk (see 
Fig. la). In this case the point r = 0, z = 0 is the point of incidence of the flow, from 
which a hydrodynamic boundary layer, whose thickness continually increases, extends in the 
radial direction. The equations of hydrodynamics and convective heat and mass transfer in 
the Boussinesq approximation have in this case the following form: 

1 O r ( r u ) +  Ov = 0 ,  u Ou Ou 1 Op OZu 
r Oz Or -~- v .  = Oz Po Or + v Oz 2 , 

0 --  1 Op + g [PT (T - -  To) -q- P~ (c - -  Co)], 
Po Oz 

OT OT 02T Oc Oc OZc 
u Or + v  a , u - k v  D Oz Oz~ "~r Oz Oz~ ' 

(i) 

and t h e  d e r i v a t i v e s  i n  t h e  d e f i n i t i o n s  o f  ~T and ~c a r e  c a l c u l a t e d  w i t h  p = P0. We n e g l e c t  
t h e  d e p e n d e n c e  o f  t h e  k i n e m a t i c  v i s c o s i t y ,  t h e  t h e r m a l  d i f f u s i v i t y ,  and t h e  d i f f u s i o n  c o e f -  
f i c i e n t  on t h e  t e m p e r a t u r e  and c o n c e n t r a t i o n ,  t h o u g h ,  a s  shown i n  [ 1 1 ] ,  i n  many c a s e s  t h i s  
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can lead to significant uncertainties in the determination of the heat and mass fluxez. The 
solution of Eqs. (i) must satisfy the following boundary conditions: 

z = O ,  r ~ R :  u = v = O ,  T = T ~ ,  c = % ,  

z = O ,  r ~ R: OT/Oz = O, Oc/Oz = O, (2 )  

z--~oo: p--->-O, u - + O ,  T - + T o ,  c -+ c o 

(p is the pressure perturbation, determined by the convective motion). The solution of the 
problem (i) and (2) is very complicated and at the present time can be constructed onJy nu- 
merically. Here, using the ideas of boundary-layer theory, we obtain an approximate self- 
similar solution, for which the radius of the disk R must be made to pass formally to infin- 
ity. Introducing the parameters 

Gr r : gtl~rl R 3 ITs,, - -  To] t?,3 vz , GV = g I~l ~21% - -  col (3 )  

and the self-similar variables 

z , 1/5 T _ T o  c _ c o  

n =  r ' r w - - T o '  q~ (~l) --  , 

1 o ~  1 o ~  (/4) 

r Oz r Or 

/5 5vzpo )3]4/5 

we o b t a i n  f rom (1)  and (2)  t h e  f o l l o w i n g  p rob lem:  

5 I ' "  + 8II" - -  F 2 = 2 ( o  - ~ 0 ' ) ,  6 '  = - -  0 - -  • 

0" q- (8/5) Pr [0' = 0, rp" q- (8/5) Sc f~' = 0, ( 5 ) 

f (o) = / '  (o) = o, o (o) = ,~ (o) = 1, 

G ( ~ ) =  0, f ' ( ~ ) =  0, 0 ( ~ ) = ~ ( ~ ) = 0 ,  

where  t h e  f o l l o w i n g  d i m e n s i o n l e s s  p a r a m e t e r s  have  been  i n t r o d u c e d :  

Pr v Sc = v ~ (c~ - -  Co) (6)  
a D Dr (T~ - -  T0) 

The situation shown in Fig. la in the case of purely thermal convection and ~T < f ob- 
viously corresponds to T w > T O . If K > 0, then a nonuniformity of the concentration gives 
rise to a buoyancy force acting in the same direction as the buoyancy force owing to t~e 
nonuniformity of the temperature, i.e., upwards. When c < 0, the first force weakens the 
second force. A problem similar in form to (5) was formulated previously in [12]. 

The expansion of the function f(q) for small values of q has the form (~/2)eq + O(qa). 
According to the considerations described in detail in [13], in solving the third and fourth 
equations in(5) in the case Pr >> 1 and Sc >> 1 it is admissible to replace f by the leading 
term in this expansion. Then we have 

[@ i /] - hl'l 1 l [4~ pr~ 1/3 
0 =  1 - -  r 3 .i'0exp(-- l 3) at, k =  \ - - - i ~  ] ' 

and a c o m p l e t e l y  a n a l o g o u s  fo rmu la  w i t h  Pr r e p l a c e d  by Sc i s  o b t a i n e d  f o r  O(q) .  A f u r t a e r  
s i m p l i f i c a t i o n  can be made by u s i n g  t h e  f i r s t  t e rm o f  t h e  e x p a n s i o n  f o r  t h e  i n t e g r a n d ,  'qhich 
gives 

0---- 1 . . . .  ~]r~ , ~ < ~ r ;  0 = 0 ,  r t > ~ r ;  ~r--=0,89(,4-~p~)15 ~/3 ,  

and in addition qT is the thickness of the thermal boundary layer. It is obvious that ~:his 
procedure somewhat reduces the buoyancy forces stimulated by the temperature nonuniformity. 
For this reason it is more logical to determine qT from some integral relation (as is gen- 
erally characteristic of the boundary-layer theory), for which it is natural to study the 
equation for the zeroth moments of the starting and approximate functions @(q), i.e., 
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0 O1) d~i 1 
o 

where 8(~) is determined above in terms of a quadrature. 
puter gives the following formulas: 

f l - ' ~ r '  ~ ] ~ r  ~P:: 1 O --- ~ ' 1 - -  hi~]~, ~1 ~ ~l~ 

10, n ~;~ n r  [0, n ~> n~ 

A simple calculation using a tom- 

(7) 

~lr -- 1.01 (15/4~ Pr)l/3, ~lc = 1,01 (15/4~ St)I /a .  

F o r  l i q u i d s  Sc >> 1 a l w a y s  h o l d s ,  b u t  Pr  c a n  v a r y  o v e r  a w i d e  r a n g e .  The r e q u i r e m e n t  
Pr >> i obviously limits the class of solutions that can be studied, but it may be assumed 
with confidence that Sc > Pr and therefore Dc < ~T" We emphasize that a serious error is 
made in [13] as well as in very many subsequent works: it is assumed without foundation 
that the thickness of the hydrodynamic boundary layer is equal to ~T or qc, depending on 
whether thermal or concentration convection is under study. In reality, even a concen- 
trated force, formally corresponding to a thermal or diffusion boundary layer with vanish- 
ingly small thickness, generates motion in a finite region, and in addition the outer bound- 
ary of this region approaches infinity as the modulus of the force approaches zero. Accord- 
ing to this assumption, the boundary conditions in the limit ~ -~ in (5) are replaced by 
conditions at N = ~T or ~ = ~c" In the present analysis of combined convection the inade- 
quacy of this assumption already becomes obvious because qT and nc are completely equiva- 
lent and it is not clear which of these values of q should be employed as the boundary value. 

Thus the determination of the heat and mass fluxes is actually reduced to calculating 
the coefficient a, for which an equation with boundary conditions for f in (5) with G(~) = 0 
and 

o '  == (1-n/nr), nc< n< nr, (8) 

I0, ~1-~ q r ,  

must be solved. 

For the solution we shall employ the method of joined asymptotic expansions [14]. Tak- 
ing into account the fact that for ~ << 1 the conditions f' ~ ~ << i, f ~ ~2 << i hold we 
obtain for the region indicated 

_4_~ 2 1 ( @ @  • ]~5, O ~ ] . ~ I c  ' 
f =  n 150  , - 

~*  1 ~ ( 9 )  
, ~ :  I < ~ - ~ T  , [ --= A ~ + B*~ + - - - n  2 - -  ~ 

2 150 qr 

] - A + B  B + C ~ ] ,  ~ t r : ~ ( , ( 1 ,  

w h e r e  new c o n s t a n t  c o e f f i c i e n t s  w h i c h  c a n  be  e x p r e s s e d  i n  t e r m s  o f  a and  qT,  ~c f r o m  t h e  s i x  
c o n d i t i o n s  o f  c o n t i n u i t y  o f  f and  i t s  d e r i v a t i v e s  on t h e  p l a n e s  ~ = ~T and ~ = ~0 h a v e  b e e n  
i n t r o d u c e d .  

I n  t h e  l i m i t  ~ § ~ t h e  f u n c t i o n  f ( ~ )  a p p r o a c h e s  a c o n s t a n t  m, c h a r a c t e r i z i n g  t h e  t o t a l  
f l u x  o f  l i q u i d  a l o n g  t h e  h o r i z o n t a l  s u r f a c e .  F o r  t h i s  r e a s o n  i t  i s  e a s y  t o  s e e  t h a t  f o r  s u f -  
f i c i e n t l y  large values of ~ the first two terms on the left side of the equation for f in 
(5) are equally significant, but the third term can be neglected. Then we have 

f = m + n exp [ - -  3m (q - -  ~r)], i] ~) ~ r ,  ( 10 ) 

and  i n  a d d i t i o n  t h e  p a r a m e t e r s  m and  n a r e  unknown and  m u s t  be  d e t e r m i n e d ,  l i k e  t h e  q u a n -  
t i t y  a ,  from the joining conditions. The last relation in (9) plays the role of an inner 
asymptotic expansion while (i0) is an outer expansion, written in inner variables [14]. Ex- 
panding (i0) in a series in powers of n - qT and equating its coefficients to the quantities 
A, B, and C from (9), after calculations we obtain the equations 
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m _ F n l (  2 ) 2 1 19 
2 15 150 150 

1 a 1 a 
- -3m, ,=  •  + / -2C 5-0- • 

9 2 

2 15 
3 / 2  

from which it follows, in particular, that m ~ n ~ qrx �9 
9/2 

equation neglecting terms of order NT.c we obtain 

For this reason from the last 

= 2 ( •  3/5, 
15 0,507 (11) 

which determines the thicknesses of the thermal and diffusion boundary layers introduced in 
(7). 

The local heat flux from the surface is 

00:z= ~ 0,37% (T~ - -  To) (p@/a S~2/a) '/~ ]r = - -  k = R3/S r215 Pr 11~ + Gr~/5 �9 (i2) 

Integrating (12) over the surface of a disk with finite radius we have 

N u = 0 , 4 6 3 P r l / 3 (  1 ~ )  Z/5 pr2/---- ~ + Or/5  . (13) 

In the absence of a concentration factor (K = 0) we obtain from here the well-known formula 
Nu ~ (PrGrT)I/s, found by the method of integral relations in [5] and later confirmed in 
[15, 16] .  

A n a l o g o u s l y  t h e  l o c a l  d i f f u s i o n  f l u x  i s  

ac I 0,37D(c,~--co) Sc~/3/ I Sc@/a)i/SGr~/~ Jc=--D oZ . . . .  R3/s 2/5 ' , - - - ] -  �9 (14) z=o r ~ Pr 2/a 

Transforming this formula with the help of (3) and (6) and integrating over the surface of 
the disk we obtain 

Sh ~ 0,463 SC 1/3 / ~  1 11/5 
/ ~-") " :Sc  -/3 nL - - 7  Gr~/s, (15) �9 x P r  -~/3 

which in the absence of the thermal factor reduces to Sh ~ (ScGrc) I/5 

It is easy to see that in order that with T w > t o an ascending flow be incident on the 
lower surface of the disk (or with T w < T O a descending flow is incident on its top surface), 
the inequality 

P r - ~ / 3 @ x S c - 2 / 3 > O .  (16) 

must hold. 

When the opposite inequality holds the convective flow realized corresponds to fl)w of 
liquid away from the central part of the surface; this is shown in Fig. ib for the bottom 
surface of the disk. This situation is best analyzed with the help of the ideas developed 
in [16-19], according to which the boundary-layer approximation is employed to analyze the 
converging flow, converging toward the center of the disk. A hydrodynamic boundary laver 
arises in this case on the outer edge of the disk, and near the center of the disk the 
boundary layer becomes detached. The fact that the indicated approximation becomes incor- 
rect in the central region is not very significant for evaluating the thermal and diffusion 
flows, since they become degenerate in this region. 

We shall change the sign of the velocity component u, assuming it positive for a flow 
directed toward the center of the disk, and we introduce the variable x = R - r. The equa- 
tion of continuity can then be represented in the form 

a [ (R--x)  u ] +  a 0---~ -~z[(R--x)v] = O. (17) 
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The form of the other equations in (i) with 8/8r replaced with 8/8x remains unchanged 
under the indicated transformations, and the boundary conditions in the region 0 5 x 5 R 
are identical to those in (2). We introduce the stream function in this case in accordance 
with (17): 

( R  - -  x )  u = a ~ / O z ,  ( R  - -  x )  v = - -  O ~ / O x ,  (18)  

and we retain for 8 and r the previous definitions in (4) and we perform the substitution 
of the variables ~ and p using the formulas 

r = R[g 113rl IT,~, -- Toll t/a (vx)a/sf  (~, n), 
(19)  

P = Po [g l[3rl IT~ - -  Tol] 4/s (~x)2/bG (~, q), 

and in addition we introduce new independent variables as follows: 

= x /R,  ~] = [g IDrl IT,,, -- Toll 1/5 (vx)2,.'az. (20)  

The prob lem f o r  t h e  d i m e n s i o n l e s s  s t r e a m  f u n c t i o n ,  p r e s s u r e ,  t e m p e r a t u r e ,  and concen-  
t r a t i o n  acquires the following form after the transformations: 

( l  - -  ~) . [ ;2  + (1 - -  ~) f f ; '  - -  T f'~' - -  - -  

] ,, x (a--nG)--:a{ +(i--~)~(fSf;-fJg'n)--~jn = o , G = o + x %  

( 2 i )  oe 3 oo _~f;~176 ~ - ~  o~o 

~f; o~  3 o,~ _ ~f~ o~  __ 1 - .  ~ o ~  
at 5 f 81--7 o~ Sc &? ' 

t (~, o)  = f;, (~, o) - -  f ;  (~, oo) = o, 6 (~, oo) = 0, 

0(~, 0)=(p(~, 0 ) =  I, 0(~, oo )=~(~ ,  oo)=_-0. 

It is natural to seek the solution of the problem (21) in the form of a series in pow- 
ers of the variable ~, and in addition in the region near the edge of the disk, where heat 
and mass exchange with the liquid predominantly occurs, to a first approximation it is suf- 
ficient to calculate the first terms of these series, which corresponds to replacing (21) by 
a self-similar problem. For the indicated first terms we obtain the problem 

- 5  f ' '=  ( a -  ~G'), ~' = o + •  

0 " +  '3 cp" _~3 O, - ~  Pr [0' = 0, + b Sc fq/. --- 
(22) 

(0) = f' (0) =0, 0 (0) = ~ (0) = i, 

6(~)=o, f'(~)=o, 0(~)=~(~)=o, 

which differs from (5) only by the coefficients. The problem (22) can be analyzed com- 
pletely analogously to the preceding problem. For 8 and qo the formulas in (7) remain valid, 
but for the dimensionless thicknesses of the thermal and diffusion boundary layers in this 
case we have 

llr = 1,01 ( l O / a P r ) - l / a ,  ~l~ = 1,01 (10/o~ So)-1/a. (23)  

Using once again the method of joined asymptotic expansions, we obtain the following 
expression for the coefficient 

o = , (24)  

replacing (ii). Omitting the intermediate calculations we present the final expressions for 
the Nusselt and Sherwood numbers, replacing (13) and (15): 
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(25) sh=0,65Sc~/3(s_~/~+__l ),/~,/5 
• pr2/3 urc . 

The character of the dependence of these numbers on the parameters is identical for 
both types of flows, but the numerical coefficients are different. 

It is not difficult to study using analogous methods the problem of combined thermal- 
concentration convection at a vertical plate, when the cases of ascending and descending 
flows are symmetric (see Figs. ic and d). Omitting the details of the calculations ~e pre- 
sent the final formulas for the Nusselt and Sherwood numbers: 

Nu = 0 ,662Prt /a  D--~l/a + 1/4 Gr~/4, 
Shl/a I 

( 2 6 )  

Sh=O,662Sc , / a l s@~/a_]_  __I .~/4Or~/4 
prl/3 

w h e r e  t h e  t h e r m a l  and  c o n c e n t r a t i o n  G r a s h o f  n u m b e r s  a r e  d e t e r m i n e d ,  a s  b e f o r e ,  by t h e  r e l a -  
t i o n s  ( 3 ) .  I n  t h e  l i m i t  < + 0 o r  ~ ~ ~ t h e  f o r m u l a s  ( 2 6 )  t r a n s f o r m  i n t o  t h e  w e l l - k n o w n  f o r -  
m u l e s  Nu ~ ( P r a r T )  1/4 and  Sh ~ ( S c G r c ) Z / 4 ;  t h e  e x a c t  v a l u e  o f  t h e  c o e f f i c i e n t  i n  ( 2 6 ) ,  o b -  
t a i n e d  w i t h  t h e  h e l p  o f  t h e  n u m e r i c a l  s o l u t i o n  o f  t h e  p r o b l e m ,  i s  e q u a l  t o  0 . 6 7  [ 2 J ,  a h i c h  
differs insignificantly from the value presented. 

Thus the existence of a mass exchange process, accompanying heat exchange between the 
surfaces and the liquid, can both increase and decrease the effective heat flux, depending 
on the sign of the ratio <. An analogous conclusion can also be drawn for the effect of 
thermal effects on the convective diffusion flow. Moreover, with < =-(Sc/Pr) 2/3 for hori- 
zontal and ~ =-(Sc/Pr) I/a for vertical surfaces the direction of convective motion i~:self, 
generated by the nonuniformity of the density field, can be reversed. The change in uhe 
direction of flow corresponds to vanishing of Nu and Sh; this reflects the complete s~:opping 
of the convective transport. 

We shall evaluate the possibility of a change in the convection regime and the corre- 
sponding vanishing of the heat and mass fluxes for the situation when the concentration dif- 
ferential between the surface and the volume of the liquid is assumed to be given, wh:le 
the temperature differential is regarded as a variable. Thus for the system 1.5NH2SO,~ + 
CuSO4 we have the following estimates [20, 21]: 

f f e ~  1,5 - - 2 , 0 -  t0-~ me/mole ~r~" 10-a ]/~ 

I f  i t  i s  a s s u m e d  t h a t  c w c o r r e s p o n d s  t o  s a t u r a t i o n ,  t h e n  c w - co = 10 - 102 m o l e / m  a [ Z 1 ] ;  i n  
a d d i t i o n  [ 2 0 ,  2 1 J :  

Sc 0,16.10 -6 
- -  - =  267. 

Pr 0.6.10 -9 

The c r i t i c a l  v a l u e s  o f  I~] f o r  h o r i z o n t a l  and v e r t i c a l  s u r f a c e s  a r e  e q u a l  t o  4 1 . 5  and 
6 . 4 4 ,  r e s p e c t i v e l y .  The v a l u e s  o f  ITw - To I, c o r r e s p o n d i n g  t o  a c h a n g e  i n  t h e  c o n v e c t i o n  
r e g i m e ,  i n  t h e  c a s e s  i n d i c a t e d  a r e  e q u a l  t o  0 . 1 - 0 . 5  and 0 . 2 5 - 3 ~  i . e . ,  t h e y  a r e  v e r y  s m a l l .  
It follows from here that the most insignificant thermal effect from heterogeneous reac- 
tions can already radically change the conditions for the flow of these reactions; this is 
undoubtedly important both for interpreting experimental data and for organizing these re- 
actions under technological conditions. 

In conclusion we note that the condition Pr >> 1 for the analysis presented to be ap- 
proximately valid turns out to be very restrictive. However the procedure employed to solve 
the problems studied can in principle be extended, which makes it possible to calculate with- 
out any special difficulties the terms in the expansions of Nu and Sh in negative fractional 
powers of the parameters Pr and Sc. 

NOTATION 

a, thermal diffusivity; c, concentration; d, diffusion coefficient; f and G, dimension- 
less stream function and pressure; g, acceleration of gravity; j, local flux; m and n, coef- 
ficients in (i0); p, pressure; R, radius of the disk; r, radial coordinate; T, temperature; 
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u and v, velocity components; x = R - r; z, vertical coordinate; BT and ~c, inverse coeffic- 
ients of thermal and concentration expansion; ~, coefficient in (9); q and $ dimensionless 
variables defined in (4) and (20); ~, parameter defined in (6); v, kinematic viscosity; 
and ~, dimensionless temperature and concentration; p, density; ~, stream function; Nu, Sh, 
Gr, Pr, and Sc, Nusselt, Sherwood, Grashof, Prandtl, and Schmidt numbers. The indices 0 
and w refer to states in the volume of the liquid and at the surface, respectively. 
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